Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase.
نویسندگان
چکیده
Prenyltransferases (PTSs) are involved in the biosynthesis of terpenes with diverse functions. Here, a novel PTS from Arabidopsis (Arabidopsis thaliana) is identified as a trans-type polyprenyl pyrophosphate synthase (AtPPPS), which forms a trans-double bond during each homoallylic substrate condensation, rather than a homomeric C10-geranyl pyrophosphate synthase as originally proposed. Biochemical and genetic complementation analyses indicate that AtPPPS synthesizes C25 to C45 medium/long-chain products. Its close relationship to other long-chain PTSs is also uncovered by phylogenetic analysis. A mutant of contiguous surface polar residues was produced by replacing four charged surface amino acids with alanines to facilitate the crystallization of the enzyme. The crystal structures of AtPPPS determined here in apo and ligand-bound forms further reveal an active-site cavity sufficient to accommodate the medium/long-chain products. The two monomers in each dimer adopt different conformations at the entrance of the active site depending on the binding of substrates. Taken together, these results suggest that AtPPPS is endowed with a unique functionality among the known PTSs.
منابع مشابه
Functional characterization of long-chain prenyl diphosphate synthases from tomato.
The electron transfer molecules plastoquinone and ubiquinone are formed by the condensation of aromatic head groups with long-chain prenyl diphosphates. In the present paper we report the cloning and characterization of two genes from tomato (Solanum lycopersicum) responsible for the production of solanesyl and decaprenyl diphosphates. SlSPS (S. lycopersicum solanesyl diphosphate synthase) is t...
متن کاملCrystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase.
Undecaprenyl diphosphate synthase (UPS) catalyzes the cis-prenyl chain elongation onto trans, trans-farnesyl diphosphate (FPP) to produce undecaprenyl diphosphate (UPP), which is indispensable for the biosynthesis of bacterial cell walls. We report here the crystal structure of UPS as the only three-dimensional structure among cis-prenyl chain elongating enzymes. The structure is classified int...
متن کاملRegulation of product chain length by isoprenyl diphosphate synthases.
An analysis of the x-ray structure of homodimeric avian farnesyl diphosphate synthase (geranyltransferase, EC 2.5.1.10) coupled with information about conserved amino acids obtained from a sequence alignment of 35 isoprenyl diphosphate synthases that synthesize farnesyl (C15), geranylgeranyl (C20), and higher chain length isoprenoid diphosphates suggested that the side chains of residues corres...
متن کاملAlteration of product specificity of Aeropyrum pernix farnesylgeranyl diphosphate synthase (Fgs) by directed evolution.
Directed evolution of the C25 farnesylgeranyl diphosphate synthase of Aeropyrum pernix (Fgs) was carried out by error-prone PCR with an in vivo color complementation screen utilizing carotenoid biosynthetic pathway enzymes. Screening yielded 12 evolved clones with C20 geranylgeranyl diphosphate synthase activity which were isolated and characterized in order to understand better the chain elong...
متن کاملSubstrate specificities of several prenyl chain elongating enzymes with respect to 4-methyl-4-pentenyl diphosphate.
In order to develop synthetic methods for biologically active homoallylic terpene sulfates, we examined the applicability and substrate specificities of several prenyl chain elongating enzymes with respect to 4-methyl-4-pentenyl diphosphate (homoIPP). The reaction of dimethylallyl diphosphate with homoIPP by use of Bacillus stearothermophilus (all-trans)-farnesyl diphosphate synthase resulted i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 155 3 شماره
صفحات -
تاریخ انتشار 2011